FACTORING BINOMINALS

Greater Common Factor (GCF)

For example, consider the binomial $8x^2 + 12x = \text{think of the factors of each}$ $term = \underbrace{4*2*x*x}_{} + \underbrace{4*3*x}_{}$

- A. Look for a number and/or variable that are common to both terms.
 - 1. Greatest common number is 4 (although "2" is also common to both terms, it is not the greatest.)
 - 2. The common variable for both terms is "x" with the <u>smallest</u> exponent, in this case is x^{1} .
 - 3. Finally, combining the common numbers with common variables, we get the GCF = 4x.
- B. Divide each term by GCF.

$$\frac{8x^2}{4x} + \frac{12x}{4x} = 2x + 3$$

- Rewrite the expression with GCF outside parentheses and the remainder after division inside. Note: the gcf is part of the factored form don't drop it off
 4x(2x+3)
- D. Examples: $2x^3+36x^2-12x=2x(x^2+18x-6)$

$$9yx^3 + 3yx + 6y^2x^2 = 3yx(3x^2 + 1 + 2yx)$$

FACTORING BINOMIALS - SPECIAL CASES

A. Difference of Squares

 $A^2 - B^2 = (A - B)(A + B)$

First, identify that you have the difference of perfect squares!!!

EXAMPLES OF PERFECT SQUARES

<u>NUMBERS</u>	<u>VARIABLES</u>	COMBINATIONS
1	$a^2 b^2 x^2 y^2$	$25x^2$
4	$a^4 b^4 x^4 y^4$	64b ⁴
9	a ⁶ b ⁶ x ⁶ y ⁶	9a ⁶
16	$a^8 b^8 x^8 y^8$	81y ⁸
25	$a^{10} b^{10} x^{10} y^{10}$	$16x^{10}$

EXAMPLES OF BINOMIALS

Example 1: factor $X^2 - 4$.

- 1. Identify the perfect squares of both terms: in this case are X^2 and 2^2
- 2. Make sure that the expression is a difference (means minus (–) between the terms).
- 3. Take the $\sqrt{\ }$ of the first term and use that as the first term in each factor $\sqrt{x^2} = \mathbf{X}$.
- 4. Take the $\sqrt{\ }$ of the second term and use that as the second term in each factor $\sqrt{4} = 2$.
- 5. Make the signs in each factor opposite (+)(-).
- 6. Use the results of the square roots is the factoring process: $F_{YY} = 4x^2 6x^6 (2x 2x^3)(2x + 2x^3)$

Ex:
$$4x^2 - 9y^6 = (2x - 3y^3)(2x + 3y^3)$$

 $x^2 - 81 = (x+9)(x-9)$